Asymptotic approximations for certain 6-j and 9-j symbols

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 326901
(http://iopscience.iop.org/0305-4470/32/39/401)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:45

Please note that terms and conditions apply.

COMMENT

Asymptotic approximations for certain 6-j and 9- \boldsymbol{j} symbols

James K G Watson
Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6

Received 5 March 1999

Abstract

An error in the phase factor of a recent asymptotic approximation by Chen et al (1999 J. Phys. A: Math. Gen. 32 537-53) for certain 6- j symbols in terms of 3- j symbols is corrected. A related asymptotic approximation for $9-j$ symbols with large angular momenta in the four 'corners' is pointed out.

In a recent paper, Chen et al [1] gave a justification of asymptotic approximations for 6j symbols and Racah polynomials originally published by Ponzano and Regge [2]. These approximations are useful in a variety of systems, such as the Rydberg states of molecules [3], where the rotational angular momentum is often large compared with the other angular momenta, giving Hund's angular momentum coupling cases d or e.

The purpose of this comment is to point out that the phase given in [1] for the asymptotic 6- j coefficient

$$
\left\{\begin{array}{ccc}
a & b & e \\
d+R & c+R & f+R
\end{array}\right\} \quad(a, \ldots, f)=\mathrm{O}(1) \quad R \sim \infty
$$

is incorrect for certain cases involving half-integer quantum numbers.
To correct the phase we can start by restoring the factor $(-)^{2 R}$ omitted in equations (2.13) and (2.14) of [1]. If we make the replacement $s \rightarrow s+\alpha_{e}$ in equation (2.14), the sum S_{1} becomes the same as that in equation (1.4) for the $3-j$ symbol

$$
\left(\begin{array}{ccc}
a & b & e \\
c-f & f-d & d-c
\end{array}\right)
$$

The phase factor in the relation between the 6-j and 3-j symbols is then found to be

$$
\begin{equation*}
(-)^{\alpha_{e}+2 R-a+b+d-c}=(-)^{a+b+e+2 a+2 d+2 R}=(-)^{a+b+e+2(d+c+f+3 R)} . \tag{1}
\end{equation*}
$$

We thus obtain
$\left\{\begin{array}{ccc}a & b & e \\ d+R & c+R & f+R\end{array}\right\} \sim \frac{(-)^{a+b+e+2(d+c+f+3 R)}}{(2 R)^{1 / 2}}\left(\begin{array}{ccc}a & b & e \\ c-f & f-d & d-c\end{array}\right)$.
This result reproduces the original phase factor given by Ponzano and Regge [2], with the generalization that here R can be an integer or half-integer.

The factor $(-)^{a+b+e}$ can be absorbed by changing the sign of the components in the $3-j$ symbol. With a change of notation, the result can be rewritten as [3]

$$
\left\{\begin{array}{lll}
a & b & c \tag{3}\\
D & E & F
\end{array}\right\} \sim \frac{(-)^{2(D+E+F)}}{(2 R+1)^{1 / 2}}\left(\begin{array}{ccc}
a & b & c \\
F-E & D-F & E-D
\end{array}\right)
$$

where a, b, c are small, D, E, F are large, and $R \approx \frac{1}{3}(D+E+F)$. This result is equivalent to that given by Alder et al [4]. Relative to this formula, that of [1] lacks the factor $(-)^{2(D+E+F)}$. The necessity for this factor can be seen from a particular case, the (exact) relation

$$
\left\{\begin{array}{lll}
a & 0 & a \tag{4}\\
D & E & D
\end{array}\right\}=\frac{(-)^{2 E}}{(2 D+1)^{1 / 2}}\left(\begin{array}{ccc}
a & 0 & a \\
D-E & 0 & E-D
\end{array}\right)
$$

where the factor $(-)^{2 E}$ is -1 for half-integer E, which occurs for half-integer $(D-a)$.
An interesting asymptotic relation for certain $9-j$ symbols can be derived from the $6-j$ result (3), namely [3]

$$
\left\{\begin{array}{ccc}
A & b & C \tag{5}\\
d & e & f \\
G & h & I
\end{array}\right\} \sim \frac{(-)^{b+C-d-G}}{(2 R+1)}\left(\begin{array}{ccc}
b & e & h \\
C-A & \epsilon & G-I
\end{array}\right)\left(\begin{array}{ccc}
d & e & f \\
G-A & \epsilon & C-I
\end{array}\right)
$$

where the 'corner' angular momenta are large, the others are small, $R \approx \frac{1}{4}(A+C+G+I)$ and $\epsilon=A-C-G+I$. This approximation is obtained by using equation (3) in the second-last equation of page 143 of [5] and then summing by means of the third equation of page 141 of [5]. This asymptotic approximation has been tested by numerical calculations for a range of values of the quantum numbers.

References

[1] Chen L-C, Ismail M E H and Simeonov P 1999 Asymptotics of Racah coefficients and polynomials J. Phys. A: Math. Gen. 32 537-53
[2] Ponzano G and Regge T 1968 Semiclassical limits of Racah coefficients Spectroscopic and Group Theoretical Methods in Physics ed F Bloch et al (Amsterdam: North-Holland) pp 1-58
[3] Watson J K G 1999 Rotation-electronic coupling in diatomic Rydberg states The Role of Rydberg States in Spectroscopy and Photochemistry: Low and High Rydberg States ed C Sándorfy (Dordrecht: Kluwer) pp 293-327
[4] Alder K, Bohr A, Huus T, Mottelson B and Winther A 1956 Study of nuclear structure by electromagnetic excitation with accelerated ions Rev. Mod. Phys. 28 432-542
[5] Brink D M and Satchler G R 1993 Angular Momentum 3rd edn (Oxford: Clarendon)

